Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.

Symposium on the occasion of the 5th anniversary of the Institute for Carbon Composites.

Dr.-Ing. Christian Sorg - BMW AG
Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Requirements to high-volume composite manufacturing.

- Reduction of material costs
- Reduction of cycle-times
- Machinery
- Capable Process Control Systems

Automotive: „high-volume“

Aerospace: „low-volume“

Motorsports: „manufacture“

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Challenges to high-Volume Composite Manufacturing.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Consequence</th>
<th>Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly interacting processing parameters</td>
<td>Sensitive process → spontaneously occurring failures</td>
<td>Capable process control system</td>
</tr>
<tr>
<td>Sequenced process chain (RTM-Process) carries defect parts through the process</td>
<td>Extensive quality controls after every process step (early failure detection necessary) → high costs</td>
<td></td>
</tr>
<tr>
<td>Relation between processing parameters and final part properties not entirely resolved</td>
<td>Time consuming fault-removal process → high idle time → high costs</td>
<td>Process knowledge and transparency</td>
</tr>
</tbody>
</table>

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Handling of interactions.

Schematic view of a 2-parametric interaction:

Example part: (●): parameter A ↑ ∧ parameter B ↓ → reworking issue

Example: Support Vector Machine (SVM)

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Knowledge Discovery in Databases and Data Mining.

Traditional approach:
manual acquisition, analysis and interpretation of data by experts

Problems:
rising complexity of manufacturing processes + dramatically increasing volume of data to handle → Traditional approaches are stretched to their limits

Problem-Solving-Approach:

Knowledge Discovery in Databases
KDD is a structured process with the aim of identifying valid, new, useful and interpretable information within huge data collections

Data Mining
Data mining is a part of the KDD process in which methods from different fields (statistics, artificial intelligence, machine learning, …) are applied on the current data

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Modeling of the process chain.

Input Variables:
- Material
- Layers
- Fabrics
 - Type
 - Areal-Weight
- Non-Crimp-Fabrics
 - Type
 - Areal-Weight
- Binder
- VA-Mesh
- Core

Disturbance Variables:
- Material
- Measurement Errors
- Control Variable Tolerances
 - Temperature, applied Pressure
- Environment
 - Humidity, Temperature

Control Variables:
- Temperatures
- Heating System
- Tool-Temperature
- Pressure
 - Stamp Pressure
- …
- Time
 - Cycle Time
 - Heating System
 - Cycle Time
 - Preform Press

Target Values:
- Properties
 - Geometry
 - Weight
 - Stability
- Quality Issues
 - Type of Defect
 - Location of Defect
- Process Issues
 - Cycle Time
 - Material Requirements
 - Waste
 - Defect Rate

Control Variables:
- Temperatures
- Resin / Hardener
- Tool-Temperature
- Pressure
 - Stamp Pressure
 - Injection Pressure
- …
- Time
 - Injection Time
 - Demoulding Time

Target Values:
- Properties
 - Fiber-Volume Fraction
 - Geometry
 - Weight
- …
- Quality Issues
 - Type of Defect
 - Location of Defect
- Process Issues
 - Cycle Time
 - Material Requirements
 - Waste
 - Defect Rate

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Concept and setup of the data mining system.

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Capabilities of a data mining environment.

Manufacturing process → **Data (Data-Warehouse)**

Reporting
- Visualization of all relevant information
 → Continuous transparency

Analytics
- Evaluation of the process data
 - Using methods from the fields of statistics, and data mining
 → Continuous Improvement

Predictive Analytics
- Prediction of failures and reworking issues using trained data mining models
Reporting example: causes of defects.

Browser based reporting tool with combined information of process and quality data

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Analytics example: CHAID-Decision tree.

Automatically generated decision tree
Reworking issue: surface ripples at the BMW M3 Coupé CFRP roof

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.
Predictive analytics example: failure detection system.

Integrated Quality System for the detection of failures and reworking issues.

Advantages:
- Online monitoring of all processing parameters
- Visualization of the predicted results ➔ support of the machine operator
- Early detection of defect parts allow early removal from the supply chain ➔ increase of the net-benefit
Further possibilities: Support of the ramp-up management

Faster identification of the optimal process-window in new processes by the use of data mining (\(\Delta t \downarrow \)).
Benefits and conclusion.

Reporting:
- Increased availability of all relevant data
- Accelerated visualisation and analysis
- Support of the problem solving process
- Faster diagnosis → minimization of idle times

Analytics:
- extended and automated analytical methods by the use of data mining
- Quantifiable influence of control variable to dependent variable
- Description and handling of multidimensional interactions possible

Predictive Analytics:
- Promising results from a pilot study at the M3 Coupé CFRP-roof
- Early removal of scrap parts from the process chain to increase cost efficiency
- Reduced test cycles of the parts

Conclusion:
Data mining offers a variety of new possibilities to the high-volume manufacturing of composite parts and is able to contribute to the industrialization of the carbon-fiber in automotive industry.
Thank you for you attention.

Data mining as a method to industrialize and qualify automotive high-volume composite manufacturing.

Kontakt:
Dr.-Ing. Christian Sorg
E-Mail: christian.sorg@bmw.de
Mobil: +49 151 6022 8310